Integrated software platform for Green ENgineering dESIgn and product sustainability

Progettazione Europea un caso di successo: progetto G.EN.ESI

Sviluppo Sostenibile per il Made in Italy Date: 23/01/2015 Place: Ancona (Italy)

The G.EN.ESI project

Eco-design methodology

Genesi Eco-design software platform

Current gaps

Shortcomings of currently available eco-design tools:

- Too qualitative/subjective to be used by designers with limited experience
- Too quantitative, costly and time consuming for use during the early stages of product development
- Do not integrate easily with traditional design tools

The G.EN.ESI project

Eco-design methodology

Genesi Eco-design software platform

Integrated software platform for Green Engineering dESIgn and product sustainability

Three year research and development project which began in February 2012, will be completed in 2015

Project includes eight partners from research and industry across Europe

BATH GREAT

This project is co-financed by the European Commission and made possible within the VII Framework Programme

The G.EN.ESI Project aims to support the integration of eco-design within the design and development process by developing:

1) The G.EN.ESI Methodology: A structured workflow for introducing environmental considerations into an existing product development process

2) The G.EN.ESI Platform: A set of inter-operable, CAD PLM integrated software tools that help assess and address the environmental impacts of the products you design

The G.EN.ESI project

Eco-design methodology

Genesi Eco-design software platform

The G.EN.ESI project

Eco-design methodology

Genesi Eco-design software platform

MI:Materíals Gateway

Mi:Materials Gateway

Purpose

Give the designer a quick and simple way to perform a simplified life cycle assessment in early stages of his design

Tool benefits

Guide materials selection, enabling design of more sustainable, cost-effective, and durable products

Analyze environmental impact to key environmental indicators

- CO2 footprint
- embedded energy
- water usage
- RoHS
- food compliance
- end-of-life behavior

Purpose

Support the designer in the evaluation of the product disassemblability and end of life performance

Tool benefits

- Understand the product disassembly criticalities
 - Calculation of the product disassembly time and cost
 - Identification of the most critical connections
 - Comparison of alternative connections performances

Understand the product recyclability criticalities

- Calculate the product recyclable mass at end of life
- Identification of the components with the lowest recyclability index
- Evaluation of benefits related to the modification of material components
- Retrieve suggestions on critical components and their recyclability level

AL2_710 - cappa stilux

70.97 %

Purpose

Support designer in the evaluation of the product energy consumption

Tool benefits

Understand the product consumption during the use phase

- Evaluate the compliance with the product category energy label
- Evaluation of the contribution of different energy using components in the product
- Identification of the components responsible of the major energy consumption in the product
- Comparison of different component alternatives
- Comparison of the consumption related to different use scenarios

Purpose

Detailed analysis of the environmental impacts of product life cycle (Life Cycle Assessment) compliant with standard ISO 14044 - ISO 14040

Tool benefits

Simplified data input phase suitable also for non-expert users

Deeply understand the environmental hotspots by using multi-indicator results:

- Consumption of mineral resources
- Consumption of non-renewable energy
- Climate change
- Acidification
- Eutrophication
- Ozone layer depletion
- hazardous and not hazardous waste production indicators
- Toxicity
- ...

Easy comparison of two product options

	Indicator	Position on target plot calculated using formula: (CompStudyValue-RefStudyValue)/RefStudyValue x 100				
IN01	Consumption of mineral resources kg antimony eq	+10				
IN02	Consumption of biomass kg	+00%				
IN03	Consumption of fresh water m ³	120 HIGH				
IN04	Consumption of non-renewable energy MJ					
IN05	Consumption of renewable energy MJ					
IN06	Climate change kg CO ₂ eq					
IN07	Acidification kg SO ₂ eq					
IN08	Eutrophication kg PO ₄ eq	indo nico				
IN09	Photochemical oxidation kg ethylene eq	1007 HUG6				
IN10	Ozone layer depletion kg CFC-11					
IN11	Production of hazardous waste kg	Value shows a deterioration preater than 100%				
IN12	Total waste production kg	Value lies between 100% improvement and 100% deterioration				
T	itle of the Reference Study (RefStudy)	office desk, wood legs				
Title	of the Study being compared (CompStudy)	office desk, wood legs office desk, steel legs				

Support designers during the design/redesign process of environmental sustainable products

Tool benefits

Improve the product environmental performances by the suggestion of the eco-design guidelines

Collect and share eco-design knowledge within the company

Ecodesign Guidelir	nes Ecodesign K	nowledge									
Filters Option Product family	All	✓ Fur	nctional Group	All	~	Standard Compo	nent All		~		
Objective	All		✓ LifeCycle Phase All			V Search Product Guidelines					
Guidelines found	ied: 38	Sea	ırch								
Name	Description	Attachment	Phase	Objective	Product Family	Functional Group	Standard Component	Source	Date	Rate	^
Evaluate the economic saving along all the lifecycle of high efficiency motors	About more than 80-85% of the motor life cycle cost is related to the energy consumption during the motor use. A higher effciency can determine a significant reduction in the total life cycle cost of a motor.		Use	Minimize energy consumption ; Increase use efficiency ; Maximize energy efficiency index ; Minimize resources and energy input	Cooker hood	Motor-Impeller	Motor-Impeller ; Electric Motor	MOTORI ELETTRICI E VARIATORI DI VELOCITA' AD ALTA EFFICIENZA	10/01/2014 00.00.00	0	
Consider the efficiency of different lamp alternatives	Medium consumptions: 100% Incandescence, 80%, Incandescence Halogen, 20%-30% Fluorescence,		Use	Minimize energy consumption ; Increase use efficiency ; Increase of lighting efficiency	Cooker hood	Lamp	Lamps	MOTORI ELETTRICI E VARIATORI DI VELOCITA' AD ALTA EFFICIENZA	10/01/2014 00.00.00	0	~

The G.EN.ESI project

Eco-design methodology

Genesi Eco-design software platform

Motivation

- Energy label requirements on domestic range hoods,
- Beyond the energy label: waiting for life cycle certification

 "…In the year under review, we have continued to pro-actively address and improve our performance in sustainability topics that are relevant to our business. I am pleased to report that Franke Group is on track to meet the targets related energy and water consumption, CO2 emissions and occupational health & safety. Yet, we have to strengthen our efforts in reducing the amount of hazardous waste…"

> Alexander Zschokke President/CEO Franke Group

Cooker hood environmental hot spots

High energy consumption during the use phase

 \rightarrow 80% of the total environmental impact

Limited product recyclability

 \rightarrow around 70%

Limited blower/motor disassemblability

 \rightarrow around 120 seconds

